6. Corrigés des exercices d'entraînement et de préparation au DS

Exercice 5.A:

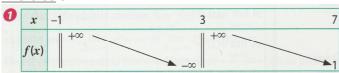
On lit dans le tableau que $\lim_{x \to \infty} f(x) = 2$ et $\lim_{x \to \infty} f(x) = +\infty$.

2 $\lim_{x \to -\infty} f(x) = 2$ donc la droite d'équation y = 2 est une asymptote à \mathscr{C}_f en $-\infty$.

3 $\lim_{x \to +\infty} f(x) = +\infty$ donc tout intervalle de la forme]A; $+\infty$ [, et en particulier l'intervalle

]100 ; $+\infty$ [, contient toutes les valeurs de f(x) dès que x est assez grand. Cela signifie qu'il existe un réel x_0 tel que tous les nombres strictement supérieurs à x_0 ont une image par f strictement supérieure à 100.

Exercice 5.B:

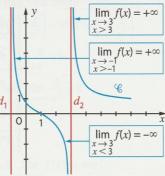


2 a. $\lim_{x \to -1} f(x) = +\infty$ donc la droite d_1 d'équation x = -1 est une asymptote

« verticale » à \mathscr{C}_f . $\lim_{x \to 3} f(x) = -\infty \text{ et } \lim_{x \to 3} f(x) = +\infty \text{ donc la}$

droite d_2 d'équation x = 3 est une asymptote « verticale » à \mathscr{C}_f .

b. On commence par tracer les deux asymptotes d_1 et d_2 . Puis, on peut tracer une allure de la courbe \mathscr{C}_f en prenant en compte les variations de la fonction f et ses limites en -1 et en 3.



Exercice 5.C:

1 On calcule la limite de chaque terme, puis on utilise les règles pour la somme.

a. $\lim_{x \to -\infty} 7 = 7$ et $\lim_{x \to -\infty} x^3 = -\infty$ donc par règle pour le produit $\lim_{x \to -\infty} (7x^3) = -\infty$.

 $\lim_{x\to -\infty} (-9) = -9$ et $\lim_{x\to -\infty} x^2 = +\infty$ donc par règle pour le produit $\lim_{x\to -\infty} (-9x^2) = -\infty$.

Par conséquent, $\lim_{x \to -\infty} (7x^3 - 9x^2) = -\infty$.

Et comme $\lim_{x \to -\infty} 2 = 2$, on en déduit : $\lim_{x \to -\infty} (7x^3 - 9x^2 + 2) = -\infty$.

b. $\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty$ et $\lim_{\substack{x \to 0 \\ x < 0}} (2x + 3) = 3$ donc $\lim_{\substack{x \to 0 \\ x < 0}} \left(\frac{1}{x} + 2x + 3 \right) = -\infty$.

c. $\lim_{x \to +\infty} e^x = +\infty$ et $\lim_{x \to +\infty} (7x + 1) = +\infty$ donc $\lim_{x \to +\infty} (e^x + 7x + 1) = +\infty$.

2 On calcule la limite de chaque facteur, puis on utilise les règles pour le produit.

a. $\lim_{x \to +\infty} \sqrt{x} = +\infty$ et $\lim_{x \to +\infty} (2 - x) = -\infty$ donc $\lim_{x \to +\infty} \sqrt{x} (2 - x) = -\infty$.

b. $\lim_{\substack{x \to 0 \\ x \to 0}} (x - 3) = -3$ $\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty \text{ donc } \lim_{\substack{x \to 0 \\ x > 0}} \left(2 - \frac{1}{x}\right) = -\infty$ donc $\lim_{\substack{x \to 0 \\ x > 0}} (x - 3)\left(2 - \frac{1}{x}\right) = +\infty$.

c. $\lim_{x \to -\infty} e^x = 0$ donc $\lim_{x \to -\infty} (3 - e^x) = 3$ et $\lim_{x \to -\infty} (2 + e^x) = 2$.

Par conséquent, $\lim_{x\to-\infty} (3-e^x)(2+e^x) = 6$.

Exercice 5.D:

• Limite en
$$+\infty$$
: $\lim_{x \to +\infty} x^2 = +\infty$ et $\lim_{x \to +\infty} (5x + 2) = +\infty$ donc par règle pour la somme $\lim_{x \to +\infty} f(x) = +\infty$.

• Limite en
$$-\infty$$
: $\lim_{x \to -\infty} x^2 = +\infty$ et $\lim_{x \to -\infty} (5x + 2) = -\infty$.

On est en présence de la forme indéterminée « ∞ – ∞ » : on ne peut pas conclure.

Pour calculer cette limite, il faut donc utiliser une autre expression de f.

On factorise le polynôme $x^2 + 5x + 2$ par son terme de plus haut degré.

Pour tout réel x non nul,
$$f(x) = x^2 + 5x + 2 = x^2 \left(\frac{x^2}{x^2} + \frac{5x}{x^2} + \frac{2}{x^2} \right) = x^2 \left(1 + \frac{5}{x} + \frac{2}{x^2} \right)$$
.

$$\lim_{x \to -\infty} 5 = 5 \text{ et } \lim_{x \to -\infty} \frac{1}{x} = 0 \text{ donc } \lim_{x \to -\infty} \left(5 \times \frac{1}{x} \right) = 0, \text{ soit } \lim_{x \to -\infty} \frac{5}{x} = 0.$$

$$\lim_{x \to -\infty} 2 = 2 \text{ et } \lim_{x \to -\infty} \frac{1}{x^2} = 0 \text{ donc } \lim_{x \to -\infty} \left(2 \times \frac{1}{x^2} \right) = 0, \text{ soit } \lim_{x \to -\infty} \frac{2}{x^2} = 0.$$

On en déduit :
$$\lim_{x \to -\infty} \left(1 + \frac{5}{x} + \frac{2}{x^2} \right) = 1$$
.

$$\lim_{x \to -\infty} x^2 = +\infty$$

$$\lim_{x \to -\infty} \left(1 + \frac{5}{x} + \frac{2}{x^2} \right) = 1$$
donc par règle pour le produit $\lim_{x \to -\infty} f(x) = +\infty$.

Exercice 5.E:

• Limite de f en 4 : $\lim_{x\to 4} (-x+4) = 0$. La limite de l'inverse sera donc infinie.

Pour déterminer s'il s'agit de $-\infty$ ou de $+\infty$, on doit étudier le signe de -x + 4 selon les valeurs de x.

x	-∞		4		+∞
-x + 4		+	0	-	

 $\lim_{\substack{x \to 4 \\ x > 4}} (-x + 4) = 0 \text{ et pour } x > 4, -x + 4 < 0 \text{ donc } \lim_{\substack{x \to 4 \\ x > 4}} (-x + 4) = 0^{-} \text{ et } \lim_{\substack{x \to 4 \\ x > 4}} f(x) = -\infty.$

Limite de f en $+\infty$: $\lim_{x \to +\infty} (-x + 4) = -\infty$ donc $\lim_{x \to +\infty} f(x) = 0$.

· Limite de g en 4 :

$$\lim_{\substack{x \to 4 \\ x \to 4}} (3x) = 12$$

$$\lim_{\substack{x \to 4 \\ x > 4}} (-x + 4) = 0^{-}$$

$$\begin{cases}
\text{donc par règle pour le quotient } \lim_{\substack{x \to 4 \\ x > 4}} g(x) = -\infty.
\end{cases}$$

Limite de g **en** $+\infty$: $\lim_{x \to +\infty} (3x) = +\infty$ **et** $\lim_{x \to +\infty} (-x + 4) = -\infty$.

On est en présence de la forme indéterminée « $\frac{\infty}{\infty}$ » : on ne peut pas conclure.

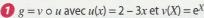
On doit donc modifier l'expression de g. On peut factoriser le dénominateur par x, puis

Pour tout réel x de]4; +\infty[,
$$g(x) = \frac{3x}{-x+4} = \frac{3x}{x(-1+\frac{4}{x})} = \frac{3}{-1+\frac{4}{x}}$$

$$\lim_{\substack{x\to +\infty\\ x\to +\infty}} 3=3$$

$$\lim_{\substack{x\to +\infty\\ x\to +\infty}} \frac{4}{x}=0 \ \operatorname{donc} \lim_{\substack{x\to +\infty\\ x\to +\infty}} \left(-1+\frac{4}{x}\right)=-1$$
 donc par règle du quotient $\lim_{\substack{x\to +\infty\\ x\to +\infty}} g(x)=-3$.

Exercice 5.F:



• Limite de g en $-\infty$:

$$\lim_{x \to -\infty} (2 - 3x) = +\infty \text{ et } \lim_{X \to +\infty} e^{X} = +\infty$$

donc
$$\lim_{x \to -\infty} g(x) = +\infty$$

• Limite de g en $+\infty$:

$$\lim_{x \to +\infty} (2 - 3x) = -\infty \text{ et } \lim_{X \to -\infty} e^X = 0$$

donc
$$\lim_{x \to \infty} g(x) = 0$$
.

2
$$h(x) = (u(x))^4$$
 avec $u(x) = 2 - 3x$.

Ainsi:
$$h = w \circ u$$
, avec $w(X) = X^4$.

$$\lim_{x \to -\infty} (2 - 3x) = +\infty \text{ et } \lim_{x \to +\infty} X^4 = +\infty \text{ donc } \lim_{x \to -\infty} h(x) = +\infty.$$

$$\lim_{x \to +\infty} (2 - 3x) = -\infty \text{ et } \lim_{x \to -\infty} X^4 = +\infty \text{ donc } \lim_{x \to +\infty} h(x) = +\infty.$$

Exercice 5.G:

1 Pour tout réel
$$x$$
, $-1 \le \cos(x) \le 1$ donc $x - 1 \le x + \cos(x) \le x + 1$, soit $x - 1 \le f(x) \le x + 1$.

2 a. On a
$$\lim_{x \to 0} (x-1) = +\infty$$
 et $\lim_{x \to 0} (x+1) = +\infty$.

L'inégalité $f(x) \le x + 1$ ne permet pas de déterminer la limite de f en $+\infty$.

On peut en effet trouver des fonctions vérifiant

cette inégalité et de limites différentes.

Par contre, l'inégalité $x - 1 \le f(x)$ permet

d'appliquer l'un des théorèmes de comparaison :

$$x-1 \le f(x)$$
 et $\lim_{x \to +\infty} (x-1) = +\infty$

donc
$$\lim_{x \to +\infty} f(x) = +\infty$$
.

b. On sait que pour tout réel
$$x, x-1 \le f(x) \le x+1$$
.

On doit diviser chaque membre de cet encadrement par x et donc se placer dans un intervalle où on connaît le signe de x.

Comme on cherche la limite en $+\infty$, on se place dans l'intervalle]0 ; $+\infty$ [.

Pour tout réel
$$x > 0$$
, $\frac{x-1}{x} \le \frac{f(x)}{x} \le \frac{x+1}{x}$.

Pour tout réel
$$x > 0$$
, $\frac{x-1}{x} \le \frac{f(x)}{x} \le \frac{x+1}{x}$.

$$\lim_{x \to +\infty} \frac{x+1}{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right) = 1 \text{ et } \lim_{x \to +\infty} \frac{x-1}{x} = \lim_{x \to +\infty} \left(1 - \frac{1}{x}\right) = 1$$

Donc d'après le théorème des gendarmes, $\lim_{x \to \infty} \frac{f(x)}{x} = 1$

Exercice 5.H:

- **a.** Iim $xe^x = 0$ (par croissances comparées) donc $\lim_{x \to a} (2 xe^x) = 2$.
- **b.** $\lim_{x \to +\infty} e^{x} = +\infty$ et $\lim_{x \to +\infty} (-x) = -\infty$: on est en présence de la forme indéterminée $\ll \infty - \infty$ ». On transforme l'expression $e^x - x$ en factorisant par x.

Pour
$$x \neq 0$$
, $e^x - x = x \left(\frac{e^x}{x} - 1 \right)$.

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{e^x}{x} = +\infty \text{ (par croissances comparées) donc } \lim_{\substack{x \to +\infty \\ x \to +\infty}} \left(\frac{e^x}{x} - 1\right) = +\infty.$$

De plus,
$$\lim_{x \to +\infty} x = +\infty$$
. Donc par produit $\lim_{x \to +\infty} x \left(\frac{e^x}{x} - 1 \right) = +\infty$. D'où $\lim_{x \to +\infty} (e^x - x) = +\infty$.

c.
$$\lim_{x \to -\infty} (-x^2 + 1) = -\infty$$
 et $\lim_{x \to -\infty} e^x = 0$: on est en présence de la forme indéterminée

« $\infty \times 0$ ». On transforme l'expression $(-x^2 + 1)e^x$ en la développant.

Pour tout réel x, $(-x^2 + 1) e^x = -x^2 e^x + e^x$.

$$\lim_{x \to -\infty} x^2 e^x = 0 \text{ et } \lim_{x \to -\infty} e^x = 0 \text{ donc } \lim_{x \to -\infty} (-x^2 e^x + e^x) = 0. \text{ D'où } \lim_{x \to -\infty} (-x^2 + 1) e^x = 0.$$

d. Pour
$$x \ne 0$$
, $\frac{e^{3x}}{x} = 3 \times \frac{e^{3x}}{3x}$

$$\lim_{x \to +\infty} (3x) = +\infty \text{ et } \lim_{X \to +\infty} \frac{e^X}{X} = +\infty \text{ donc par composition } \lim_{x \to +\infty} \frac{e^{3x}}{3x} = +\infty$$

et par suite
$$\lim_{x \to +\infty} \left(3 \times \frac{e^{3x}}{3x} \right) = +\infty$$
. Donc $\lim_{x \to +\infty} \frac{e^{3x}}{x} = +\infty$.

